nbdocs Documentation
Release 1.0

Roman Valov

Nov 25, 2020

CONTENTS:

1 Task1
1.1 Step 1. Overview o L o e e e e e e e e e e e
1.2 Step 2. Templates o L e e e e e e e e e e e
1.3 Step3.Installation L L e e e
1.4 Step 4. Builddocs L e e e e e
1.5 Step 5. Notebooks eXtension v v v v it i e e e e e e e e e e e e e
1.6 Step 6. Rendering notebooks oL
1.7 Step7. Moving to GitHub
1.8 Step8. Readthe Docs o . o e e
1.9 Step 9. Notebookson Readthe Docs i
.10 Step 10. Themming o o v i o e e e e e e e e e e e e e e e e e e

2 Point data

3 Gridded data

4 Citations using notebook html citations

5 Citations using markdown footnotes syntax

6 Citations using markdown superscript syntax (pandoc only)
7 Indices and tables

Bibliography

AR W LW WNRN P = = -

wn

11

13

15

17

19

CHAPTER
ONE

TASK 1

Hi, Erik. In this document I will guide you step-by-step into process of creating and deploying docs example to RTD.
As you’ve requested the docs will have Jupyter Notebook.

1.1 Step 1. Overview

The RTD service is a document-hosting service for GitHub-hosted projects. It’s free and it’s only supposed to host
documentation projects, not custom sites or files.

RTD is built on top of widely-used Sphinx project (https://www.sphinx-doc.org/en/master/). Sphinx is documentation
generator, it produces documentation in various formats (primarily html) from templates files.

1.2 Step 2. Templates

Sphinx templates are just text files formatted using RST markup language. RST is similar to Markdown (markup
language used in GitHub readme files or StackOverflow posts).

To get the idea of RST and learn basic constructs please read following doc:
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

It’s actually possible to use Markdown to write tempates for Sphinx however I’ve never used this possibility before.

1.3 Step 3. Installation

At first you have to install the Sphinx document generator on your system. If you’re using Ubuntu run:

sudo apt-get install python3-sphinx

Alternatively you could use pip3 command to install sphinx package from PyPI repository:

sudo pip3 install sphinx

Please note that there is python2 and python3 version of Sphinx could be available in your repository. You should
prefer the same version as your primary project uses (Sphinx analyzes your python code to build documentation).
Also please ensure you have only one version installed because you could get conflicts in ohter case.

Once installation completed, go to your source code directory and run:

https://www.sphinx-doc.org/en/master/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

nbdocs Documentation, Release 1.0

sphinx—quickstart

This wizard will ask you several questions about your project and configuration options. It’s safe to keep with defaults
for all the configuration options, just ensure to set proper project name, author and version.

Take a minute to consider the structure of your sources. You should keep your *.ipynb files in the root of documenta-
tion.

1.4 Step 4. Build docs

When wizard completes you should find following files in your repository:

conf.py (configuration)

index.rst (home page template)
Makefile (build scripts for Linux)
make.bat (build scripts for Windows)

Directory could contain other files and subdirectories but they’re not importrant.

In order to build html version of your docs run following command:

make html

This command will generate html docs in _build/html subdirectory (if you haven’t changed the defaults) Now
you can navigate with your file explorer to this directory and open index.html file in your browser. If you’re on
Ubuntu you could run following command without leaving the console:

’xdgfopen _build/html/index.html

1.5 Step 5. Notebooks extension

Hope everything is working fine and you were able to see your documentation stub in the browser. You could freely
try various formatting constructs according to previously mentioned RST primer. But for the sake of simplicity I will
continue to show you how to integrate Jupyter Notebooks.

Sphinx is extensible software and in order to render Jupyter Notebooks you have to install nbsphinx extension.

If you’re on Ubuntu you should run:

’sudo apt-get install python3-nbsphinx

Alternatively you could install PyPI version of the package:

’sudo pip3 install nbsphinx

Now you should enable the extension in the conf . py. Open the file with your favorite editor and find extensions
stanza. Add 'nbsphinx' to the list of extensions, i.e.:

extensions = ['nbsphinx']

2 Chapter 1. Task 1

nbdocs Documentation, Release 1.0

1.6 Step 6. Rendering notebooks

Now it’s time to add your notebook to the docs. Make sure you have you *.ipynb file in the same directory with
index.rst. Open index.rst with your favorite editor. By default the auto-generated file has Table of Contents
and several standard links. You should modify table of contents and add the name of your *.ipynb file to the list. The
.ipynb extension should be omitted. Also make sure your entry is idented on the same level as colon-marked stanzas:

. toctree::
:maxdepth: 2
:caption: Contents:

maps

As you see in my case I’ve added maps entry to the list. It’s actually a copy of python_maps_example.ipynb
from your repository renamed for the sake of convenience.

Once ready please run the build again and check results in your browser. Based on the maps file contents found in
your repository you will get index page with pair of links on it. Each of the links will point to the sub-section in newly
created maps . html file built from your notebook.

The same way you could freely use arbitrary *.ipynb file instead of RST-file, even instead of index.rst. However
you have to delete index . rst file in latter case because *.rst files are prioritized by Sphinx.

1.7 Step 7. Moving to GitHub

If everything is working fine locally it’s time to move to public hosting. In order to do that you should commit and
upload your files to your GitHub repository.

The following files should be commited and pushed to the repository:

index.rst <your-noteook-file>.ipynb conf.py

As of Makefile and make.bat — they’re just convenient wrappers for local builds and not required for RTD.

You could check that GitHub will render not only *.ipynb files in it’s web-interface, but also *.rst files.

1.8 Step 8. Read the Docs

When your files are available on GitHub it’s time to register an account on ReadTheDocs and link your GitHub
repository.

Go to https://readthedocs.org/accounts/login/ and press the Sign in with GitHub button.

In the profile page of ReadTheDocs you will find Import project button, use it and select your repository from
the list.

Once imported all the machinery should be set up by ReadTheDocs to start build and set up rebuild on each commit
to your repo.

Please take a time to get familiar with ReadTheDocs interface.

In general it’s usefull to be able to check the status of the last build and view the build logs.

1.6. Step 6. Rendering notebooks 3

https://readthedocs.org/accounts/login/

nbdocs Documentation, Release 1.0

1.9 Step 9. Notebooks on Read the Docs

By default ReadTheDocs is not configured to use Notebooks extension previously used for local build.
In order to change the limitations you have to add pair of configuration files to your repository.

At first, add the requirements. txt file to the same dir where you have index . rst located and add following
lines:

ipykernel
nbsphinx

These lines will instruct ReadTheDocs build to download packages from the PyPI archive.

On your local setup ipykernel is usually installed as a dependency for Jupyter and nbsphinx was installed as a
part of the tutorial.

At second, you have to add configuration file for ReadTheDocs service itself which relies on the requirements.
txt defined. Configuration file for ReadTheDocs should be named . readthedocs.yml and should be located in
top dir of your repository:

version: 2
formats: all
python:
version: 3
install:
- requirements: docs/requirements.txt
system_packages: true

As you see in my case the version of Python interpreter is set to 3 and requirements.txt is located in docs
subdir.

Once files added do a commit and push to your repository, the ReadTheDocs will do the rebuild in a while.

1.10 Step 10. Themming

Sphinx supports themming. In my case Sphinx tools bundled with the distro are patched to use Alabaster theme by
default.

In order to force your documentation pages to use particular theme it should be configured via html_theme param-
eter.

For example to use default ReadTheDocs theme you have to set html_theme="'sphinx_rtd_theme' in your
configuration file.

Being default for ReadTheDocs service it will be handled automatically on ReadTheDocs service. However if you
wish to give it a try locally you have to install theme’s python package:

sudo pip3 install sphinx-rtd-theme

: import numpy as np

import cartopy

import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
$matplotlib inline

4 Chapter 1. Task 1

[32]:

[36]:
[36]:

CHAPTER
TWO

POINT DATA

import pandas as pd

df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/2011_
—february_us_airport_traffic.csv')

df .head()
iata airport city state country \

0 ORD Chicago O'Hare International Chicago IL USA

1 ATL William B Hartsfield-Atlanta Intl Atlanta GA USA

2 DFW Dallas-Fort Worth International Dallas-Fort Worth TX USA

3 PHX Phoenix Sky Harbor International Phoenix AZ USA

4 DEN Denver Intl Denver CO USA
lat long cnt

0 41.979595 -87.904464 25129

1 33.640444 -84.426944 21925

2 32.895951 -97.037200 20662

3 33.434167 -112.008056 17290

4 39.858408 -104.667002 13781

plt.figure (figsize=(13,6.2))
ax = plt.axes(projection=cartopy.crs.PlateCarree())

Set lat/lon limit of map
ax.set_extent ([-125, -65, 24, 51], crs=cartopy.crs.PlateCarree())

Add features

ax.add_feature (cartopy.feature.LAND)

ax.add_feature (cartopy.feature.OCEAN)

ax.add_feature (cartopy.feature.COASTLINE)

ax.add_feature (cartopy.feature.BORDERS, linestyle='-', color='grey')

ax.add_geometries (cartopy.io.shapereader.Reader (cartopy.io.shapereader.natural_earth\
(resolution="110m', category="cultural

name="'admin_1_states_provinces_lakes_
—shp')) .geometries(),
cartopy.crs.PlateCarree (), facecolor="none',edgecolor="'black',1ls=":")

Add lat/lon grid
gl = ax.gridlines (cartopy.crs.PlateCarree(), draw_labels=True, linewidth=1.0,
—linestyle='-"', color='k',alpha=0.2)

(continues on next page)

nbdocs Documentation, Release 1.0

(continued from previous page)

gl.xlocator = mticker.FixedLocator (np.arange (-120,-60,10))
gl.ylocator = mticker.FixedLocator (np.arange (25,55,5))
gl.top_labels = False

gl.right_labels = False

gl.xlabel_style= {'size': 12, 'color': 'k'}
gl.ylabel_style= {'size': 12, 'color': 'k'}

Add airport locations
ax.plot (df.long, df.lat, transform=cartopy.crs.PlateCarree(),marker='o', color='red',
—markersize=4, linestyle='")

plt.show ()

/usr/local/lib/python3.6/dist-packages/cartopy/mpl/style.py:76: UserWarning:
—~facecolor will have no effect as it has been defined as "never".
warnings.warn ('facecolor will have no effect as it has been '

120°W 110°W 100w 90°W 80w TO*W

fig = plt.figure(figsize=(14,5))
ax = plt.axes (projection=cartopy.crs.PlateCarree())

Set lat/lon limit of map
ax.set_extent ([-125, -65, 24, 51], crs=cartopy.crs.PlateCarree())

Add features

ax.add_feature (cartopy. feature.LAND)

ax.add_feature (cartopy.feature.OCEAN)

ax.add_feature (cartopy.feature.COASTLINE)

ax.add_feature (cartopy.feature.BORDERS, linestyle='-', color='grey')

ax.add_geometries (cartopy.io.shapereader.Reader (cartopy.io.shapereader.natural_earth\
(resolution='110m', category="'cultural

name="admin_1_states_provinces_lakes_
—shp')) .geometries (),

cartopy.crs.PlateCarree (), facecolor="'none',edgecolor="black',ls=":")

(continues on next page)

6 Chapter 2. Point data

nbdocs Documentation, Release 1.0

(continued from previous page)

Add lat/lon grid

gl = ax.gridlines (cartopy.crs.PlateCarree(), draw_labels=True, linewidth=1.0,
—linestyle='-", color='k',alpha=0.2)

gl.xlocator = mticker.FixedLocator (np.arange (-120,-60,10))

gl.ylocator = mticker.FixedLocator (np.arange (25,55,5))

gl.top_labels = False

gl.right_labels = False

gl.xlabel_style= {'size': 12, 'color': 'k'}

gl.ylabel_style= {'size': 12, 'color': 'k'}

Add airport locations with color showing number of arrivals

p = ax.scatter(df.long, df.lat, c=df.cnt, transform=cartopy.crs.PlateCarree(), s = 20,
— cmap = 'plasma')

cb = fig.colorbar (p)

cb.set_label (r'Count', fontsize=12)

plt.show ()

25000

20000

15000

Count

10000

5000

120°W 110°W 100°wW 90w 80°W T0°W

nbdocs Documentation, Release 1.0

8 Chapter 2. Point data

[59]:

[59]:

CHAPTER
THREE

import xarray as xr

GRIDDED DATA

ds = xr.open_dataset ("http://iridl.ldeo.columbia.edu/SOURCES/.0SU/.PRISM/.monthly/dods

—",decode_times=False)

ds.tmax[0] .plot ()

<matplotlib.collections.QuadMesh at 0x7£2c0c9%9a51d0>

T=-7T795

45 1
E [
Equ-' 1 Ew
v’ £ E
o =
& F0 B
E 5o
3 58
)

= r—10
o

=20

T T T T T T
-120 110 —100 —af —80 =10
longitude [degree_east]

dx = np.unique (np.round(np.diff (ds.X),4)) [0
dy = -np.unique (np.round(np.diff(ds.Y),4)) [
print ('Grid spacing\n',dx,dy)

]
0]

Grid spacing
0.0417 0.0417

fig = plt.figure(figsize=(14,5))
ax = plt.axes (projection=cartopy.crs.PlateCarree())

Set lat/lon limit of map
ax.set_extent ([-125, -65, 24, 51], crs=cartopy.crs.PlateCarree())

(continues on next page)

nbdocs Documentation, Release 1.0

(continued from previous page)

Add features

ax.add_feature (cartopy.feature.OCEAN)

ax.add_feature (cartopy.feature.COASTLINE)

ax.add_feature (cartopy.feature.BORDERS, linestyle='-', color='grey')

ax.add_geometries (cartopy.io.shapereader.Reader (cartopy.io.shapereader.natural_earth\
(resolution='110m', category="cultural

name="admin_1_states_provinces_lakes_
—shp')) .geometries(),
cartopy.crs.PlateCarree (), facecolor="none',edgecolor="black',ls=":")

Add lat/lon grid

gl ax.gridlines (cartopy.crs.PlateCarree(), draw_labels=True, linewidth=1.0,
—~linestyle='-"', color='k',alpha=0.2)

gl.xlocator = mticker.FixedLocator (np.arange(-120,-60,10))

gl.ylocator = mticker.FixedLocator (np.arange (25,55,5))

gl.top_labels = False

gl.right_labels = False

gl.xlabel style= {'size': 12, 'color': 'k'}

gl.ylabel_style= {'size': 12, 'color': 'k'}

p = ax.pcolormesh(ds.X-dx/2, ds.Y-dy/2, np.ma.masked_invalid(ds.tmax[0]),
cmap='"nipy_spectral', vmin=-14, vmax=28,transform=cartopy.crs.

—PlateCarree())

cb = fig.colorbar (p, orientation='vertical', shrink=0.9, ticks=np.arange(-10,30,5))

cb.ax.tick_params (labelsize=12)

cb.set_label (r'Air temperature ($"{\circ}$C)', fontsize=14)

plt.show ()

45°N

40°N

35°N

(%]
Alr temperature (°C)

30°N

10 Chapter 3. Gridded data

CHAPTER
FOUR

CITATIONS USING NOTEBOOK HTML CITATIONS

Jan-Erik Tesdal[1], Ryan Abernathey[1] and Ian Fenty[2]

Mentioning the article [3].

This section demonstrates the closure of the global heat budget in ECCOv4. The steps and
Python code has been directly derived from the calculations and MATLAB code in “A Note
on Practical Evaluation of Budgets in ECCO Version 4 Release 37 by Christopher G. Piecuch
(https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/doc/v4r3_budgets_howto.pdf).

11

https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/doc/v4r3_budgets_howto.pdf

nbdocs Documentation, Release 1.0

12 Chapter 4. Citations using notebook html citations

CHAPTER
FIVE

CITATIONS USING MARKDOWN FOOTNOTES SYNTAX

Jan-Erik Tesdal'>, Ryan Abernathey’ and Ian Fenty*

This section demonstrates the closure of the global heat budget in ECCOv4. The steps and
Python code has been directly derived from the calculations and MATLAB code in “A Note
on Practical Evaluation of Budgets in ECCO Version 4 Release 37 by Christopher G. Piecuch
(https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/doc/v4r3_budgets_howto.pdf).

1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

2 Corresponding author: jt2796 @columbia.edu

3 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA

4 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

13

https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/doc/v4r3_budgets_howto.pdf
mailto:jt2796@columbia.edu

nbdocs Documentation, Release 1.0

14 Chapter 5. Citations using markdown footnotes syntax

CHAPTER
SIX

CITATIONS USING MARKDOWN SUPERSCRIPT SYNTAX (PANDOC
ONLY)

Jan-Erik Tesdal”, Ryan Abernathey' and Ian Fenty?

1 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
* Corresponding author: jt2796@columbia.edu

This section demonstrates the closure of the global heat budget in ECCOv4. The steps and
Python code has been directly derived from the calculations and MATLAB code in “A Note
on Practical Evaluation of Budgets in ECCO Version 4 Release 3” by Christopher G. Piecuch
(https://ecco.jpl.nasa.gov/drive/files/Versiond/Release3/doc/v4r3_budgets_howto.pdf).

15

mailto:jt2796@columbia.edu
https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/doc/v4r3_budgets_howto.pdf

nbdocs Documentation, Release 1.0

16 Chapter 6. Citations using markdown superscript syntax (pandoc only)

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
¢ modindex

¢ search

17

nbdocs Documentation, Release 1.0

18 Chapter 7. Indices and tables

BIBLIOGRAPHY

[1] Ryan Abernathey Jan-Erik Tesdal. Lamont-doherty earth observatory, columbia university, palisades, ny, usa.
2020.

[2] Tan Fenty. Jet propulsion laboratory, california institute of technology, pasadena, ca, usa. 2020.

[3] Alistair Adcroft and Jean-Michel Campin. Rescaled height coordinates for accurate representation of free-surface
flows in ocean circulation models. Ocean Modelling, 7(3):269 — 284, 2004. URL.: http://www.sciencedirect.com/
science/article/pii/S1463500303000544, doi:https://doi.org/10.1016/j.ocemod.2003.09.003.

19

http://www.sciencedirect.com/science/article/pii/S1463500303000544
http://www.sciencedirect.com/science/article/pii/S1463500303000544
https://doi.org/https://doi.org/10.1016/j.ocemod.2003.09.003

	Task 1
	Step 1. Overview
	Step 2. Templates
	Step 3. Installation
	Step 4. Build docs
	Step 5. Notebooks extension
	Step 6. Rendering notebooks
	Step 7. Moving to GitHub
	Step 8. Read the Docs
	Step 9. Notebooks on Read the Docs
	Step 10. Themming

	Point data
	Gridded data
	Citations using notebook html citations
	Citations using markdown footnotes syntax
	Citations using markdown superscript syntax (pandoc only)
	Indices and tables
	Bibliography

